### Article

## Thermal Relaxation in Titanium Nanowires: Signatures of Inelastic Electron-Boundary Scattering in Heat Transfer

We have employed noise thermometry for investigations of thermal relaxation

between the electrons and the substrate in nanowires patterned from 40-nm-thick

titanium film on top of silicon wafers covered by a native oxide. By controlling the

electronic temperature Te by Joule heating at the base temperature of a dilution refrigerator,

we probe the electron–phonon coupling and the thermal boundary resistance at

temperatures Te = 0.5–3 K. Using a regular T 5-dependent electron–phonon coupling

of clean metals and a T 4-dependent interfacial heat flow, we deduce a small contribution

for the direct energy transfer from the titanium electrons to the substrate phonons

due to inelastic electron-boundary scattering.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

We study Josephson junctions with weak links consisting of two parallel disordered arms with magnetic properties: ferromagnetic, half-metallic, or normal with magnetic impurities. In the case of long links, the Josephson effect is dominated by mesoscopic fluctuations. In this regime, the system realizes a phi_0 junction with sample-specific phi_0 and critical current. Cooper pair splitting between the two arms plays a major role and leads to 2*Phi_0 periodicity of the current as a function of flux between the arms. We calculate the current and its flux and polarization dependence for the three types of magnetic links.

The Book of Abstracts contains the abstracts of the papers presented at the biannual International Conference “Micro- and Nanoelectronics – 2016” (ICMNE-2016) including the extended Session “Quantum Informatics” (QI-2016). The Conference topics cover the most of the areas dedicated to the physics of integrated micro- and nanoelectronic devices and related micro- and nanotechnologies. The Conference is focused on recent progress in those areas. It continues the series of the AllRussian Conferences (since 1994) and the International Conferences (since 2003).

We study the supercurrent in quasi-one-dimensional Josephson junctions with a weak link involving magnetism, either via magnetic impurities or via ferromagnetism. In the case of weak links longer than the magnetic pair-breaking length, the Josephson effect is dominated by mesoscopic fluctuations. We establish the supercurrent-phase dependence I(ϕ) along with statistics of its sample-dependent properties in junctions with transparent contacts between leads and link. High transparency gives rise to the inverse proximity effect, while the direct proximity effect is suppressed by magnetism in the link. We find that all harmonics are present in I(ϕ). Each harmonic has its own sample-dependent amplitude and phase shift with no correlation between different harmonics. Depending on the type of magnetic weak link, the system can realize a ϕ0 or ϕ junction in the fluctuational regime. Full supercurrent statistics is obtained at arbitrary relation between temperature, superconducting gap, and the Thouless energy of the weak link.

We develop a theory of the local density of states (LDOS) of disordered superconductors, employing the nonlinear sigma-model formalism and the renormalization-group framework. The theory takes into account the interplay of disorder and interaction couplings in all channels, treating the systems with short-range and Coulomb interactions on equal footing. We explore two-dimensional systems that would be Anderson insulators in the absence of interaction and two- or three-dimensional systems that undergo an Anderson transition in the absence of interaction. We evaluate both the average tunneling density of states and its mesoscopic fluctuations which are related to the LDOS multifractality in normal disordered systems. The obtained average LDOS shows a pronounced depletion around the Fermi energy, both in the metallic phase (i.e., above the superconducting critical temperature) and in the insulating phase near the superconductor-insulator transition (SIT). The fluctuations of the LDOS are found to be particularly strong for the case of short-range interactions, especially, in the regime when transition temperature is enhanced by Anderson localization. On the other hand, the long-range Coulomb repulsion reduces the mesoscopic LDOS fluctuations. However, also in a model with Coulomb interaction, the fluctuations become strong when the systems approach the SIT.

T

) and in the insulating phase near the superconductor-insulator transition (SIT). The fluctuations of the LDOS are found to be particularly strong for the case of short-range interactions, especially, in the regime when

T

c is enhanced by Anderson localization. On the other hand, the long-range Coulomb repulsion reduces the mesoscopic LDOS fluctuations. However, also in a model with Coulomb interaction, the fluctuations become strong when the systems approach the SIT.

The future landscape of the micro-nano-electronics will essentially contain extremely miniaturized fully depleted devices such as planar SOI or narrow FinFETs and nanowires. These aspects were covered in both ULIS and EuroSOI conferences, leading to significant overlap. In order to further increase audience and scientific impact, the two sister conferences have decided to merge in 2015.

At ultralow temperatures (T< 100 mK) rather small external disturbance might lead to a noticeable overheating. While electron transport measurements the inevitable external EM noise, picked-up and transmitted through electric wires, results in a mismatch between the electron Te and the phonon Tphtemperatures P~W(Te^5-Tph^5), where P is the power dissipated at the sample with volume W. Hence, for sufficiently small nanoelectronic systems the effect might be clearly pronounced. Multiple methods have been suggested to reduce the undesired electron heating. Typically various RF filters are used to cut the impact of noisy EM environment. Often the supporting amplitude vs. frequency data are obtained only at room temperatures analyzing the impact of 'isolated' elements without taking into consideration the wires. Here we describe the custom made multistage RLC filtering system for ultralow temperature nanoelectronic experiments. The amplitude vs. frequency characteristics were measured down to very low temperatures. Distributed elements theory analysis supports experimental data.

Generalized error-locating codes are discussed. An algorithm for calculation of the upper bound of the probability of erroneous decoding for known code parameters and the input error probability is given. Based on this algorithm, an algorithm for selection of the code parameters for a specified design and input and output error probabilities is constructed. The lower bound of the probability of erroneous decoding is given. Examples of the dependence of the probability of erroneous decoding on the input error probability are given and the behavior of the obtained curves is explained.

This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .

The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.